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Abstract
Spark is a widely studied plasma source for active species production; however, it ex-
periences unstable transitions (e.g. to a thermal arc) at high frequencies or long pulse
durations. In this study, the sparks generated in a pulse train were studied and modulated
based on a physics‐corrected deep learning method. Our results show that a highly
repeatable and stable spark plasma source can be achieved by automatically adjusting the
voltage amplitude according to the discharge frequency in a high‐frequency pulse train
within the time scale of the fluid response. The influences of the electron number density
increasing mode and modulated driven voltage profiles on the energy efficiencies were
also studied.

1 | INTRODUCTION

Spark discharge plasma is generated between two bare elec-
trodes. Streamers initiate and propagate towards the opposite
electrode by applying a high‐voltage pulse to one of the elec-
trodes. Once the streamer penetrates the gas gap, a bright plasma
channel connects the electrodes [1]. Compared with glow or
streamer discharges, more energy can be deposited and more
intensive gas heating is achieved in spark plasma. Comparedwith
arc discharges, active species can produce more energy effi-
ciently through the rich non‐equilibrium chemical processes in
spark plasma. The unique features of spark discharge plasma
have attracted increasing attention from the community of
ignition and combustion [2–5], flow control [6, 7], surface
treatment [8–10], energy conversion [11–13], high‐voltage
switch design [14, 15], laser ignition [16, 17], and material engi-
neering [18, 19].

Despite these advantages, the spark has long been
considered as an ‘unstable’ plasma source in applications, as it
stands in the middle of the non‐equilibrium and equilibrium
states. A spark, if not well modulated, can easily transform into

a thermal spark [20] in a few or tens or hundreds of nano-
seconds, or conversely, periodically extinguish [21]. The heat
release, high density of excited species, and high electric field
trigger the aforementioned transitions, especially at high re-
petitive frequencies.

A repeatable and energy‐efficient plasma source is
preferred for industrial applications. Sparks generated by a
pulse train could be promising plasma sources for highly
efficient active species production and heating. By com-
pressing a few or tens of pulses within the time scale of gas
dynamics (a few microseconds in atmospheric pressure) in
one periodic cycle (from microseconds to milliseconds), the
influence of gas expansion on the reduced electric field
(calculated from the electric field and the total species
number density) can be avoided. By modulating each pulse
in the train, it is possible to generate highly repeatable
sparks and control the density of useful active species in
each cycle in a smart/accurate and energy‐efficient manner.
An example of a high‐frequency spark application can be
found in recent publications on plasma jets driven by RF
power sources [22–24].
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One of the challenges of smart spark generation in a
pulse train is to design the profile of each pulse and
automatically determine the relationship between the voltage
pulse amplitude and frequency. This is an ‘inverse problem’:
How can the pulse profile be determined to repeat the
evolution of interesting species during the next pulse? The
traditional design method based on experience or the ‘guess
—test’ methodology is no longer suitable because of the
highly non‐linear process and complex chemistry with
timescales ranging from a few nanoseconds to tens of
microseconds.

Machine learning (ML) has exhibited significant potential
for addressing problems in complex systems. The concept of
Artificial Intelligence for Science has been proposed and
implemented in gas dynamics [25, 26], combustion [27, 28],
disease diagnosis [29, 30] and protein structure prediction
[31, 32]. ML has also been used in plasma physics and
applications, and some pioneering studies in the plasma
science community can be found in refs. [33–38]. Van der
Gaag et al. [39] used ML to inversely solve the brems-
strahlung emissivity equation. Kawaguchi et al. [40] used an
artificial feed‐forward neural network to solve Boltzmann's
equation for an electron velocity distribution function.
Mesbah et al. [41] summarised the applications of ML in the
modelling, diagnostics, and control of non‐equilibrium
plasma. In the field of ML‐assisted plasma modelling, a
double deep neural network (DNN) was developed and
successively implemented to solve the partial differential
equation systems of both thermal arc and low‐temperature
glow discharges [42, 43].

A physics‐corrected plasma + deep learning framework,
DeePlaskin, was developed and tested for non‐equilibrium
plasma systems [44]. The framework proposes a ‘predictor
—corrector’ approach combining the DNN and a global
model to reconstruct the temporal profile of the reduced
electric field E/N (and thus the potential drop on the elec-
trodes) based on pre‐defined temporal evolution of target
species.

In this study, we demonstrate how two successive sparks
during one pulse train can be modulated using the DeePlaskin
framework. The influence of the pulse frequency and
increasing mode of the target species on the voltage pulse
profiles are discussed. A two‐dimensional (2D) code validated
by experimental measurements was used to provide self‐
consistent inputs for the DeePlaskin framework. The
remainder of this paper is organised as follows. The frame-
work, 2D model, and coupling strategy are provided in section,
the results and discussions are provided in section, and con-
clusions are drawn in section.

2 | MODEL AND METHODS

Three codes are used in a combined manner in this study: the
ZDPlasKin code for plasma chemistry [45], PASSKEy code
for plasma transport [46, 47], and DeePlasKin framework for
inverse design [44].

2.1 | Discharge configuration and 2D self‐
consistent model

We considered the spark discharge configuration studied in ref
[48] as a starting point: the gas pressure was 13,332.2 Pa,
environmental temperature was 300 K, and discharge gas was
air (N2:O2 = 4:1). The anode was powered by a nanosecond
pulsed generator, producing a 10 kV peak voltage during
100 ns at pulse repetition rates from 1 to 10 kHz. The ge-
ometry consisted of two spherical copper electrodes with a
diameter of 7.5 mm, and the distance between the two elec-
trodes was 10 mm. The geometry is shown in Figure 1a. The
reason for this choice is that the low pressure and short pulse
duration allow us to ignore the influence of gas heating and
expansion on the short discharge timescale [49].

The discharge configuration was first calculated using 2D
plasma code to provide self‐consistent inputs for further
analysis. The geometry and computational domain are shown
in Figure 1b, the computational domain of the rectangle is
35 � 40 mm, the red domain is the anode, the yellow is
ground, and the blue is set as plasma domain. The 2D model
was constructed to calculate the spatial‐temporal evolution of
the electric field, species densities, and fluid dynamics, and the
Poisson equation, drift diffusion equations for electrons and
ions, and three‐Helmholtz equation model for photoionisation
were solved together. Detailed numerical implementations can
be found in previous studies [50]. The results calculated by the
2D code provide the electric field and initial electron density
for the zero‐dimensional (0D) model.

2.2 | Global chemistry model

The 0D global chemistry model was used to calculate the
temporal evolution of species densities for detailed kinetics over
a longtime scale, and generate a large amount of data for deep
learning training. The 0D model starts once the ionisation wave
passes the middle point (E/N reached its peak), and the plasma
parameters (E/N and initial species densities) in the middle
point of the 2D model (shown in Figure 2a,b) were selected to
represent the entire channel. The initial time instant of the 0D
model is determined by the moment when the ionisation front
passes the fixed point of the discharge gap, to avoid the strong
convection effect that offends against the homogeneous hy-
pothesis of the 0D model. The reduced electric field calculated
by the 2D model as the input of the 0D code is determined
based on the ratio of the voltage to the electrode gap length.

The ZDPlasKin code, which embeds the BOLSIG+ [51]
solver and QTPlaskin postprocessor, is used. The former is
designed to calculate the electron reaction rate coefficients and
electron energy distribution function, and the latter is used to
read and view the output. A system of ordinary differential
equations for time‐dependent densities of the involved species
during the period from 0 to 1000 ns was solved. The kinetic
scheme of the air discharge was drawn from ref. [52], with 62
species (electrons, N2, O2, O, O(1D), O3, O

−, O3
−, O4

+, N2
+,

N3
+, N2(C3Πu)) and 718 chemical reactions. This scheme was
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validated by optical emission spectroscopy experiments. The
essence of the 0D chemistry model is to solve a set of first‐
order ordinary differential Equation (1).

d Ni½ �

dt
¼ f E=N ; n1;2;…
� �

ð1Þ

where Ni is the ith species density, dt is the time step, and n is
the species density at the last time point.

To generate highly repeatable sparks and control the density
of useful active species, three frequencies (f1 = 1/t1 = 3.12MHz,

f2 = 1/t2 = 2.631 MHz, f3 = 1/t3 = 2.15 MHz) were selected to
modulate the spark discharge, as shown in Figure 2b. In Sec-
tion 3.2, the results for three different discharge frequencies are
discussed.

2.3 | Deeplaskin framework

DeePlasKin combines the global plasma model and deep
learning model to inversely solve the key parameters of

F I GURE 1 The studied spark discharge configuration. (a) Photograph and schematic of the discharge cell in the experiment, extracted from ref. [48].
(b) Geometry and computational domain for 2D modelling.

F I GURE 2 (a) Distribution of E/N calculated by PASSKEy at the 106 ns. (b) Temporal evolution of the electron density calculated by ZDPlaskin at the
middle point of the computational domain.
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non‐equilibrium plasma; the workflow framework is shown in
Figure 3a,b. The process can be divided into three steps.

(I) Training of the deep learning model: A large amount of
data in which the species densities evolve with time are
generated by ZDPlaskin for deep learning, and the data
are preprocessed and normalised to avoid gradient
disappearance. The data were divided into training and
test sets, and the experimental data were used as the test
set. The training set was used to train the parameters, the
validation set was compared to determine the perfor-
mance of the model, and the test set was used to evaluate
the performance of the neural network. Data features
were extracted, and a neural network was constructed.
The number of neurons and layers, loss function, opti-
miser, and learning rate were selected for training.

(II) Reconstruction of E/N: After initialisation of the species
density, such as ODE solvers, and setting the density of
predefined species, the trained DNN is used to predict
the E/N value (as well as other species density at the next
time moment) based on the predefined evolution of the
target species. This predictor can quickly generate a
relatively accurate E/N value.

(III) Correction of E/N: The predicted E/N and the species
density are input into the global plasma model to
calculate all the species densities according to the con-
crete physical laws. If the difference between the calcu-
lated by the global plasma model and the predefined
density value is larger than the tolerance (5%–10%), the
code will adjust the predicted E/N to provide the global
plasma model to update the time and species densities.
Until the tolerance is sufficiently small, E/N and all
species densities are output.

In more detail, the data are generated by the ZDPlasKin
code for training at T = 300 K and p = 100 Torr. These data
include as many reduced electric field waveforms as possible
according to Equation (2).

E=NðtÞ ¼ E=N t0ð Þ þ Ape− t−tc
σð Þ

2

ð2Þ

where Ap = 50 + 2.5M, tc = 10K, σ ¼ 50=6ð
ffiffiffiffiffiffiffi
ln 2
p

Þð1 þN=5Þ,
M,K,N= 1, 2,…, 10. There are 1000 files, and each file includes
1000‐time steps. They are divided into two parts: 80 % were
used for training, and the others were used for validation. The
experimental data were used to test the model. Before training,
we normalised both the input and output data such that the
information on the minor species was not ignored.

The ODE equation in the global plasma model is described
by Equation (3), where i denotes the ith species in the studied
chemistry set, n(t) and E/N(t) are the species densities and
reduced electric field at time t, respectively, and dt is the time
step 10−11 s). When E/N(t) and the initial species densities are
provided, all species densities are obtained by solving the
equations based on the time step.

nðt þ dtÞ ¼ f ðE=NðtÞ; nðtÞ; dtÞ ð3Þ

In the stiff ODEs system, there are more than 10 orders of
magnitude in different species densities, and there is coupling
among species. It is too difficult to reversely solve E/N using
traditional methods, and thus deep learning techniques are
used to solve E/N using Equation (4).

E=NðtÞ ¼ f ðlogðnðt þ dtÞÞ; dtÞ ð4Þ

F I GURE 3 DeePlaskin framework for inversely solving the E/N based on predefined species density. (a) Deep learning workflow for training and
prediction. (b) DeePlaskin workflow: The square with red dashed lines marks the deep learning part, the square with dark blue dashed lines marks the Global
plasma model part. The deep learning and global plasma model play as a predictor and a corrector respectively.
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By trial and error, we chose a four‐layer DNN to train the
data, where the input and vector were 65 and 63 dimensions
respectively. The input layer is used to receive the data and the
output layer is the result. The hidden layers were used to learn
the non‐linear mapping relation between the input and output.
The activation function is ReLU [53], using Equation (5) for
each neuron.

f ðxÞ ¼maxð0; xÞ ð5Þ

The ReLU is used to add non‐linear factors to increase the
expressiveness of the model such that it can compute gradients
for non‐linear functions faster. The loss function is the mean
absolute function (MAE) obtained using Equation (6).

MAE ¼

Pn
i¼1 ∣ y − y∣

n
ð6Þ

where y is the predicted value and y is the real value. The loss
function is the difference between the predicted and real
values. The task of ML is to minimise the loss function. Adam
[54], whose job is to calculate the gradient of the loss function
in each epoch and then update the weights and bias of neural
networks to minimise the loss function, is used to solve the
optimisation problem in this study. The training and validation
errors for 200 epochs are shown in Figure 7b. The neural
networks were implemented using tensorflow2.0 framework
[55], an open‐source ML library. After training, the model was
used to predict the reduced electric field, and the predicted
results were used to calculate the density of all species. If the
difference between the calculated and predefined density
values is larger than the tolerance, the code adjusts the pre-
dicted E/N to update the time and species densities according
to physical laws. When the tolerance is met, the predicted
reduced electric field and all species densities are outputted (to
the 2D model for further validation).

2.4 | How the 2D model and the 0D global
model couple with DeePlasKin

The 2Dmodel, global plasmamodel, andDeePlasKinmodel are
introduced, and the data exchange between them is shown in
Figure 4. First, a 2D model was used to calculate the spatial‐

temporal evolution of the electric field, species densities, and
fluid dynamics based on the experimental data. The 2D model
provided the temporal evolution of E/N and the initial species
densities to the 0Dmodel to calculate the temporal evolution of
species densities. The DeePlasKin model coupling the 0D
model and deep learning model was used to reconstruct the
waveform of the E/N based on the pre–defined temporal
evolution of the target species. The voltage was then calculated
according to the E/N reconstructed by DeePlasKin. The volt-
ages were input into the 2D model to validate the spatial‐
temporal evolution of the electric field and species densities.

3 | RESULTS AND DISCUSSIONS

3.1 | Base case and validations

The spark discharge model was described in ref. [48] and the
waveform of the applied voltage is shown in Figure 5a. The
voltage was put into a 2D model to calculate the spatial‐
temporal evolution of the electric field and the distribution of
species densities, and the calculated current and the distribution
of the N2(C3Πu) density were in good agreement with the
experiment in Figure 5a,b. The streamer propagation stage is
shown in Figure 6, where (a1)–(a5) and (b1)–(b5) are the spatial‐
temporal evolution of the electron density and reduced electric
field respectively. Note that it takes approximately 106 ns to
connect the two electrodes and form a discharge channel. Once
the streamer reaches the opposite electrode, the electron density
increases dramatically to complete the streamer‐to‐spark tran-
sition. However, after a few nanoseconds, the electron density
and E/N decreased quickly. Subsequently, the channel shrinks,
and the spark discharge extinguishes. For a long timescale, the
2D model is computationally expensive and time‐consuming;
therefore, the 0D model is constructed for this case. We chose a
detailed chemical kinetic scheme, including 62 species and 718
chemical reactions. The discharge cycle between the two pulses
was 3934 ns and the initial electron density was 1012 cm−3.
Other initial species densities are as follows: [N2] = 2.60� 1018,
[O2] = 4.25 � 1017, [O] = 3.83 � 1017, [O(1D)] = 5.88 � 109,
[O3] = 9.87 � 1014, [O−] = 5.23 � 109, [O3

−] = 1.20 � 108

(cm−3) Subsequently, a four‐layer DNN was developed and
used for the case. The structure of the network is illustrated in
Figure 7a. The built DNNwas trained with different numbers of
hidden nodes to determine the best parameters for the model
performance. The number of neurons in the three hidden layers
was 400, 256, and 256 respectively. The learning rate of the
Adam optimiser was 0.001, and the number of training samples
in each batch was 512. The evolution of loss functions with the
number of epochs is shown in Figure 7b. The training converges
in 100–120 epochs for the case. DeePlaKin was used to
reconstruct E/N based on the electron density, and the recon-
structed E/N is shown by the red line in Figure 8a, where the
green line is the voltage calculated by E/N. The voltage was then
used to solve the 2D discharge system. The 2D code produced a
temporal evolution of electron density similar in value and
trends to the benchmark in Figure 8b. In this case, we

F I GURE 4 Data transfer between the DeePlasKin model, 0D model,
and 2D model.
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F I GURE 5 Validation of 2D model with the spark discharge experiment. (a) Comparison of calculated and experimental current [39]. (b) Comparison of the
calculated and experimental N2(C

3Πu) by ICCD imaging technique [49].

F I GURE 6 Special‐temporal evolution of electron density (a1)–(a5) and reduced electric field (b1)–(b5).
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considered that 30% of the discharge power was used for
heating in the plasma channel (the channel radius was 1 mm),
and a 2D model was constructed to calculate the neutral

molecular number density. The temporal evolution of the mo-
lecular number density is shown in Figure 9 within 500 ns. The
results indicate that the pulse duration is much smaller than the

F I GURE 7 (a) Scheme of deep neural network built for air discharge. (b) Mean absolute error of training and validation.

F I GURE 8 (a) Reconstructing reduced electric field and voltage by the DeePlasKin. (b) Voltage is put into the 2D model to validate the electron density.

F I GURE 9 Temporal evolution of the neutral molecular number density.

1174 - YIN ET AL.

 23977264, 2023, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/hve2.12348, W

iley O
nline L

ibrary on [30/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



gas expansion time at the three frequencies; therefore, the gas
expansion does not affect the plasma parameters. In this case,
the evolution of the plasma parameters during the current pulse
can be simulated in the approximation of a constant gas density.

3.2 | Modulating sparks with regard to the
pulse frequency

Repetitive frequency pulse spark discharge can produce reliable
and continuous thermal and chemical effects, where the fre-
quency and amplitude are key parameters for regulating the
spark discharge. We used DeePlasKin to regulate the amplitude
based on a pre‐defined frequency. For the pin discharge, we
chose three frequencies f1 = 1/t1 = 3.12, f2 = 1/t2 = 2.631,
f3 = 1/t3 = 2.15 MHz to design the voltage amplitudes shown in
Figure 10. Different initial electron densities (1� 1014 cm−3,
8� 1013 cm−3, 6� 1013 cm−3) correspond to the three fre-
quencies. We used Gaussian functions to quickly increase the
electron density to 1� 1015 cm−3 such that the spark discharge
can be maintained in the next pulse. The voltages were calcu-
lated using DeePlasKin based on the electron densities in
Figure 10I–III.

As shown in Figure 10I–III, the amplitudes are 5.12, 5.22,
and 5.30 kV, respectively and E/N is 110–180 Td. The change in
peak voltage from 5.12 to 5.30 kV is relatively small (an increase
of 3%), while the change in the studied frequency from 2.15 to
3.12 MHz represents a substantial increase of 50%. Because in

this study varying initial values of electron density were associ-
ated with different frequencies, but the change in electron
density was primarily due to differences in attenuation over time
rather than significant changes in the electric field. The streamer‐
to‐spark transition process is fast when E/N is larger than
120 Td, and if E/N is larger than 240 Td the spark will be
transformed into an arc within a few nanoseconds. The designed
amplitudes can maintain the spark discharge. The heating is
weak at low pressure and on a small‐time scale, and the influence
of gas expansion can be avoided. Therefore, we can modulate
the sparks to produce the required active species with respect to
the pulse frequency using DeePlaskin.

3.3 | Modulating sparks based on species
increasing mode

To achieve repeatable and energy‐efficient spark discharge, we
designed four modes of increasing electron density to modulate
the spark during one pulse, as shown in Figure 11a. The electron
density increases to the same value (1� 1015 cm−3) but in four
different ways: (1) Gaussian function. (2) A piecewise function
in a step based on the logarithm of the electron density. (3) A
linear function based on the logarithm of electron density. (4) A
quadratic function based on the logarithm of the electron
density. The reduced electric fields were reconstructed based on
the electron densities by DeePlaskin, as shown in Figure 11b. It
is quite interesting to find that, although the generated electron

F I GURE 1 0 Temporal evolution of the electron density that we design at three frequencies (f1, f2, f3). The calculated voltage waveform and amplitude
based on their electron densities by DeePlaskin (I)–(III).

YIN ET AL. - 1175

 23977264, 2023, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/hve2.12348, W

iley O
nline L

ibrary on [30/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



densities at 50 ns are the same, the E/N(t) profile reconstructed
by DeePlaskin differs. And by producing the electron density in
a stepwise way, weaker but more field pulses are required. The
power density (W/cm3) was calculated by ZDPlaskin in
Figure 11c. The energy consumed (eV/mol) by a single mole-
cule under the time integration of power density is shown in
Figure 11d, and they are 0.301, 0.284, 0.357, and 0.282 eV/mol
respectively. The results demonstrate that the quadratic and
piecewise growth of electron density is more energy efficient,
and the specific deposited energy is decreased by 5%–20%
compared to other increasing modes. These facts indicate that,
the energy cost to produce certain species can be reduced
significantly through a strong pulse.

3.4 | Influence of pulse profiles on species
production

For the spark discharge, we consider not only the energy
consumption but also the species production. The high‐energy
electrons, ions, and excited particles generated by plasma

discharge can effectively split the hydrocarbon fuel into small
molecules, which not only enhances the chemical activity of
fuel molecules but also improves the transport effects. Ju [56]
found that an O atom can significantly improve the flame
stability and broaden the flammable limit. Yan [57] revealed
that two chain branching and propagation reactions via direct
O(1D) insertion are major pathways for radical production.
Ombrello [58] found that the branching reaction of O2(a

1Δg)
with H provided O and OH early in the reaction zone and
increased the chemical heat release and flame propagation
enhancement. However, some species play a negative role (NO
and NO2 pollute the environment). The temporal evolution of
these species varied with different pulse profiles, as shown in
Figure 11b. The temporal evolution of O, O(1D), O2(a

1Δg) is
shown in Figure 12a–c. The second and third modes can
generate more O‐atoms, O(1D) and O2(a

1Δg), but they can
generate higher densities of NO and NO2 than the fourth
mode shown in Figure 12d. Under comprehensive consider-
ation, the voltage pulse waveform corresponding to the
piecewise growth of the electron density is better than the
energy consumption and active species densities.

F I GURE 1 1 (a) Four increasing modes of electron density. (b) Solved reduced electric field by DeePlasKin based on electron density. (c) Solved power
density by ZDPlasKin based on reduced electric field. (d) Integrated energy of a molecule by power density.
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4 | CONCLUSION

A repeatable and energy‐efficient plasma source is required for
industrial applications. The high‐energy deposition and rich
chemical activity of spark discharge plasmas have attracted
increasing attention. The spark generated by a pulse train is a
promising plasma source for highly efficient active species
production and heating. By compressing a few or tens of pulses
within the time scale of the gas dynamics in one periodic cycle,
the influence of gas expansion on the reduced electric field can
be avoided. Thus, we can modulate each pulse in the train to
generate highly repeatable sparks and control the density of
useful active species in a smart and energy‐efficient manner.

In this study, we use a 2D model, 0D model, and physics‐
corrected plasma + deep learning model to modulate the
profile of each pulse and automatically determine the rela-
tionship between the voltage pulse amplitude and frequency.
The capabilities of the three models were confirmed using
both benchmark simulation cases and experimental measure-
ments. Good agreement was achieved between the results

obtained from the three models and the experiment for the air
discharge on a time scale of 50 ns.

In addition, based on DeePlaskin, we designed four E/N
profiles to simultaneously produce the same electron density
simultaneously following different increasing modes. It was
found that the quadratic growth of the electron density is more
energy efficient, and the specific deposited energy consumption
is decreased by 5%–20% compared with the other increasing
modes. The voltage pulse waveform corresponding to the
segmented increasing electron density was selected by
comparing the energy consumption and active species densities.

Note that the coupling model cannot optimise the design
automatically; therefore, we need to design a curve of the spe-
cies densities to predict E/N. Automatically optimising is one of
the key advantages of ML in future industries, and we will
present its capability by Reinforcement Learning in future
studies. In addition, the comparison with experimental data
would strongly support the conclusions made in this work,
however the manufacture of the user defined voltage wave-
forms proposed in this work is extremely hard: to produce a

F I GURE 1 2 Temporal evolution of some significant species with the different voltage waveform (corresponding to Figure 11b) for the spark discharge.
(a) Temporal evolution of O‐atom. (b) Temporal evolution of O(1D). (c) Temporal evolution of O2(a1∆g). (d) Temporal evolution of NOx.
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tailored voltage waveform within time scale of tens of nano-
seconds, is still a challenging work in the community. A recent
work for generating tailored voltage waveform can be found,
but it is still far from the voltage proposed in this work: we have
realised that, the methodology proposed in this work, despite
the improve of the efficiency, cannot be put into use shortly.
Thus, the next step of this work, might be to define more
practical variables of power sources (e.g. the frequency, the
amplitude, or the detailed circuit elements instead).
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