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ABSTRACT
Significant amounts of work have been conducted in the area of plasma flow control, while the receptivity of plasma actuation in high-speed
boundary layers has not had much attention over the last two decades. In the present study, the receptivity of a Mach 4.5 flat-plate boundary
layer to plasma heating actuation produced by pulsed-DC surface dielectric barrier discharge (SDBD) has been studied by direct numerical
simulation (DNS) and stability analysis. With the help of multimode decomposition technology, the amplitude of normal modes can be
obtained. The results show that both fast and slow modes can be excited by plasma actuation, and the receptivity maximum is observed near
the lower neutral branch. Because the pulsed-DC SDBD actuation is typical periodic pulse signals, when the total power remains constant,
the Fourier components with multiples of actuation frequency have the same energy, regardless of the waveform, period, and width of the
actuation signal. Such characteristics benefit the robustness of the pulsed-DC SDBD actuator. A theoretical prediction method by combining
the receptivity model and linear parabolized stability equations is considered in the present study, and good agreement with the DNS results
is achieved.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0016508., s

I. INTRODUCTION

Since the heat transfer, skin friction, and flow separation
are much different in laminar and turbulent boundary layers, the
laminar–turbulent transition plays a critical role in the design and
optimization of super/hypersonic vehicles. On the one hand, lami-
nar flow is expected to be maintained on the entire surface of vehi-
cles, which benefit from the low skin friction drag and heat transfer
in laminar flow. Especially for hypersonic vehicles, the weight of
the Thermal Protection System (TPS) can be significantly reduced.
On the other hand, for air-breathing scramjet vehicles, e.g., X-43/51
series, turbulent flow can help to eliminate flow separation on the
forebody inlet induced by the shockwave and boundary layer inter-
action as well as enhance the mixture of fuel and air for improving
combustion efficiency. Therefore, the accurate prediction and con-
trol of boundary layer transition are of great significance to improve
the performance of the super/hypersonic vehicles.

Laminar–turbulent transition in the high-speed boundary has
been studied for more than 50 years; excellent reviews of this

research have been conducted by Fedorov,1 Zhong and Wang,2 and
Lee and Chen.3 Nevertheless, it is still difficult to obtain an analytical
solution of the transition position at even a simple flat-plate bound-
ary layer. The most important reason is that the transition process is
strongly dependent on the external environmental conditions, such
as noise, temperature fluctuation, turbulence, and surface rough-
ness. Morkovin et al.4 and Reshotko5 summarized five main paths
to the transition. Among them, path A corresponding to nature
transition is most likely to occur in real flight conditions, where
the level of environmental disturbances is usually low. The natural
transition process can be divided into five stages, including recep-
tivity, linear modal growth, nonlinear interactions, secondary insta-
bility, and breakdown to turbulence. When disturbances’ amplitude
increases to a modest level, transient growth,6 arising from the non-
normality of disturbance equations, may become important before
linear modal growth (refer to path B in Ref. 4).

As the first stage in the transition process, receptivity
determines the amplitude, frequency, and phase of eigenmodes,
which was first proposed by Morkovin.7 For the two-dimensional

Phys. Fluids 32, 094102 (2020); doi: 10.1063/5.0016508 32, 094102-1

Published under license by AIP Publishing

https://scitation.org/journal/phf
https://doi.org/10.1063/5.0016508
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0016508
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0016508&domain=pdf&date_stamp=2020-September-1
https://doi.org/10.1063/5.0016508
https://orcid.org/0000-0003-1538-4345
https://orcid.org/0000-0003-2428-6317
mailto:shookware@tju.edu.cn
https://doi.org/10.1063/5.0016508


Physics of Fluids ARTICLE scitation.org/journal/phf

subsonic boundary layer, the research on receptivity is focused on
the scale-conversion mechanism, since wavelength scales of external
disturbances are essentially different from those of Tollmien–
Schlichting (TS) waves. The excellent theoretical works were con-
ducted by Goldstein,8 Ruban,9 Zhigulev and Fedorov,10 and Choud-
hari and Streett,11 also see the work of Goldstein and Hultgren12

as well as the work of Saric et al.13 for reviews. When the Mach
number Ma∞ is larger than about 4 for an adiabatic wall, besides
the first mode associated with the TS waves, higher modes become
dominant, which is usually called Mack mode.14 They are inher-
ently inviscid instabilities and belong to a family of trapped acoustic
waves.1

In the early experiments by Kendall15 and Stetson et al.,16 there
were large disturbances observed near the leading edge, where no
growing disturbance was expected according to linear stability the-
ory (LST). The first breakthrough research on these findings was
conducted by Fedorov and Khokhlov.17 They found that there were
two modes near the leading edge whose phase velocities are close to
those of fast (1 + 1/Ma∞) and slow (1 − 1/Ma∞) acoustic waves,
respectively. These modes were also studied by Ma and Zhong;18

in addition to the first and the second modes, they named the sta-
ble modes as modes I, II, etc. For consistency of the following dis-
cussions, the terminology suggested by Fedorov and Tumin19 is
employed in this paper. In the leading-edge vicinity, the two modes,
named fast mode (mode F) and slow mode (mode S), can be directly
excited through a strong interaction with the fast and slow acoustic
waves instead of the scale-conversion mechanism. The slow mode is
usually unstable in most cases and essentially the first mode, whereas
the fast mode is stable. When the phase velocity of the fast mode is
gradually reduced to 1, it can be synchronized with the freestream
entropy or vorticity waves. Further downstream, the phase speeds
of the fast and slow modes are approaching or equal to the posi-
tion near the neutral branch of the second mode. A strong interac-
tion between the synchronized modes occurs due to the nonparallel
effects; as a result, one mode becomes the unstable second mode,
and oppositely, the other becomes more stable. The leading edge
receptivity coefficients predicted by Fedorov20 show good agree-
ment with the experimental results of Maslov et al.21 Such receptivity
theory is also validated with direct numerical simulation (DNS) by
Ma and Zhong,18,22 Mailk and Balakumar,23 Egorov et al.,24 and
Balakumar.25

In addition to the natural receptivity, there is another impor-
tant type of receptivity, named forced receptivity.26 The forced
receptivity is referred to the mechanism by which the instability
mode is directly excited by the wall surface actuation source, such
as periodic blow-suction, local heating or cooling, vibrations, and
plasma actuation, which is the focus of this article.

Fedorov and Khokhlov27 conducted theoretical research on
the receptivity of the hypersonic boundary layer to three types of
wall disturbances with asymptotic analysis. They found that the
hypersonic boundary layers are more sensitive to vertical velocity
perturbations than temperature perturbations, and the maximum
receptivity coefficient occurs in the vicinity of the branch point
near the lower neutral branch of the second mode. Such results are
consistent with those of Pralits et al.28 using the adjoint parabo-
lized stability equations (APSEs). They also demonstrated that the
maximum control yield can be obtained if the wall or momentum
forcing is close to the lower branch of the neutral stability curve

in low Ma∞ (up to 1.2) compressible boundary layers. Wang and
Zhong29,30 gave a specific focus on the receptivity of the hyper-
sonic boundary layer to the blow-suction actuation. They found
that the instability mode is strongly excited when the actuator is
located upstream of the synchronization point. The DNS compu-
tations can provide complete information on boundary layer recep-
tivity, instability, and even transition. However, theoretical analysis
is required to understand and interpret the leading physical mecha-
nisms behind a messy disturbance field. For gaining insight into the
numerical simulation data, a multimode decomposition method was
proposed by Tumin31,32 and Gaydos and Tumin,33 which is based
on the biorthogonal eigenfunction system. Tumin et al.34,35 applied
multimode decomposition to filter out stable and unstable modes
coexisting in DNS results, and a good agreement with the receptivity
predicted model36 is reached.

Plasma flow control37,38 is different from the traditional
mechanical technology. Non-equilibrium plasma can be produced
by gas discharge, in which the rapid transformation from electric
energy to the internal and kinetic energy of the fluid is achiev-
able, through the interaction between charged particles and neutral
gas molecules. Recently, a series of studies on the control of the
crossflow-induced transition in the subsonic boundary layer with
the plasma actuator have been conducted by Dörr and Kloker39

and Guo and Kloker.40,41 Based on the concept named upstream
flow deformation (UFD), subcritical crossflow vortex modes can
be excited by the body force produced by the plasma actuators,
and the transition is delayed through hindering the growth of
the most amplified crossflow mode. Schuele et al.42 and Arndt
et al.43 experimentally studied the excitability of crossflow modes
by an azimuthal array of micrometer-sized plasma actuators in
the three-dimensional super/hypersonic boundary layers. For high-
speed flat-plate boundary layers, Keller et al.44 conducted a numer-
ical study on the potential of local energy deposition mimicking
the plasma discharge as transition-triggering devices. The effect of
base-flow manipulation on the growth of the second mode is inves-
tigated, while the receptivity of plasma actuation still needs to be
addressed.

A comprehensive understanding of the receptivity mechanism
can help us make proper decisions on transition control strategies,
and so the research on the receptivity of surface plasma actua-
tions in high-speed boundary layers is conducted in this paper. The
remainder of this paper is structured as follows: The basic governing
equations of DNS and stability analysis as well as the new schemes
of the multimode decomposition and receptivity model are intro-
duced in Sec. II. Section III starts with a code validation, and then,
the numerical modeling of plasma actuation is given. The detailed
computational results and comparison with the theoretical predic-
tion are presented in Sec. IV. Finally, conclusions are drawn in
Sec. V.

II. PROBLEM FORMULATION AND NUMERICAL
METHODS
A. Direct numerical simulations

The equations governing the total flow are the full compress-
ible Navier–Stokes (NS) equations, and the flow and coordinate
quantities are made non-dimensional as follows:
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x = x∗

δ∗0
, y = y∗

δ∗0
, z = z∗

δ∗0
, t = t∗U∗∞

δ∗0
,u = u∗

U∗∞
, v = v∗

U∗∞
,w = w∗

U∗∞
,

ρ = ρ∗

ρ∗∞
, p = p∗

ρ∗∞U∗2∞
,T = T∗

T∗∞
,μ = μ∗

μ∗∞
, κ = κ∗

κ∗∞
,

(1)

where the variables with superscript ∗ and subscript∞ represent the
dimensional and far-field flow quantities, respectively. In addition,
the boundary layer length scale δ∗0 at a specific location, introduced
to normalize the coordinates, and the reference Reynolds number
Re0 are defined as

δ∗0 = (
μ∗∞x∗0
ρ∗∞U∗∞

)
1
2

, Re0 =
ρ∗∞U∗∞δ∗0

μ∗∞
. (2)

The dynamic viscosity μ is computed by the Sutherland law,
and the thermal conductivity κ is prescribed with a constant Prandtl
number. Based on the Stokes hypothesis and the calorically perfect
gas assumption, the dimensionless compressible NS equations could
be written in the conservative form

∂U
∂t

+
∂E
∂x

+
∂F
∂y

+
∂G
∂z

+
∂Ev
∂x

+
∂Fv
∂y

+
∂Gv

∂z
+F(UB) = Sp(x, y, z, t),

(3)

where U is the conservative flux, E, F, and G are the vectors of
convective flux, and Ev, Fv and Gv indicate the viscosity terms.
In the present numerical studies, we restrict our attention to the
two-dimensional flows over a smooth flat plate, and the com-
pressible similarity solutions are used as base flows whose solver
has been validated.45 Since the similarity solutions are not the
stationary solution of the full NS equations, the term F(UB) is
introduced to maintain the basic flows, and such a method has
been adopted in many studies.46,47 Sp(x, y, z, t) is the source
term of plasma actuation, and the detailed description is given in
Sec. III.

The DNS computation code used for the present work is devel-
oped from the parallel high-order finite difference solver named
OpenCFD. This original solver was developed by Li et al.48,49 and
has been used widely in many papers. As the receptivity of small
disturbance is concerned, there is no strong shockwave disconti-
nuity over the whole flow field. The convection terms are split by
using Stager–Warming splitting and are discretized with a ninth-
order upwind scheme, whereas the viscous terms are discretized
with a tenth-order center scheme. The third-order total variation
diminishing-type (TVD) Runge–Kutta method is used for the time
advance.

B. Stability analysis
The disturbance equations are obtained through the decom-

position of the flow quantities into disturbance q′ and steady basic
flow q0. For small disturbances, neglecting the nonlinear terms,
the linearized disturbance equations are presented in the following

compact form:

Γ
∂q′

∂t
+ A

∂q′

∂x
+ B

∂q′

∂y
+ C

∂q′

∂z
+ Dq′

= Vxx
∂2q′

∂x2 + Vyy
∂2q′

∂y2 + Vzz
∂2q′

∂z2 + Vxy
∂2q′

∂x∂y
+ Vxz

∂2q′

∂x∂z

+Vyz
∂2q′

∂y∂z
, (4)

where the coefficient matrices are functions of the base flows and can
be found in Appendix A.

In the quasi-parallel linear stability theory (LST) approxima-
tion, the solution of the linearized disturbance equations is consid-
ered in the form of normal modes,

q′(x, y, z, t) = ϕ̂(y)exp(iαx + iβz − iωt) + c.c., (5)

where ϕ̂ = (ρ̂, û, v̂, ŵ, T̂)T represents the vector of the disturbance
shape function, and the superscript T stands for transpose. α and
β indicate the streamwise and spanwise wavenumbers, respectively,
while the angular frequency is denoted by ω. Substituting Eq. (5)
into the linear disturbance equations (4), the full Eigen equation of
spatial mode can be recast as follows:

L0 + αL1ϕ̂ + α2L2ϕ̂ = 0. (6)

The operators L0, L1, and L2 are given in Appendix B. Such a non-
linear eigenvalue problem can be circumvented by a simple linear
transformation

H0Φ = αH1Φ, (7)

H0 = [L0 L1
0 −I ], H1 = [ 0 −L2

−I 0 ], Φ = [ ϕ̂
αϕ̂ ] (8)

(for more details, see Ref. 50). In the present work, the global spec-
trum is computed by using the Chebyshev polynomials collocated
and the standard QZ algorithm, which provide a good guess of the
eigenvalue for local computations. For the local spectrum, the tenth-
order center difference and the Arnoldi method are employed. For
the eigenvalue problem of discrete modes, the Dirichlet conditions
boundary conditions at the wall and far-field are imposed,

⎧⎪⎪⎨⎪⎪⎩

û = v̂ = ŵ = T̂ = 0 at y = 0,

û = v̂ = ŵ = T̂ = 0 at y →∞.
(9)

The parabolized stability equations (PSEs) account for the non-
parallel effect due to the boundary layer growth and are used to
predict the linear evolution of disturbances in the boundary layer. In
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the linear PSE formulation, following the suggestion by Herbert,51

the disturbances are expressed as

q′(x, y, z, t) = ϕ̂(ξ, y)exp(i∫
x

x0

α(ξ)dξ + iβz − iωt) + c.c. (10)

Here, ϕ̂ is a function of ξ = ϵx, ϵ =O(Re−1), i.e., it is a slow function of
x. Substituting the ansatz [Eq. (10)] into the linear disturbance equa-
tions (4) and retaining terms up to orderO(Re−1), one can obtain the
linear PSE equations as

Â
∂ϕ̂
∂x

+ B̂
∂ϕ̂
∂y

+ Vyy
∂2ϕ̂
∂y2 + D̂ϕ̂ = 0. (11)

The operators Â, B̂, and D̂ were given by Zhang and Zhou.52 The
residual ellipticity of the PSE is due to the term ∂p̂/∂x of the
streamwise momentum equations that have been discussed by Li
and Malik53 and Andersson et al.,54 and the method proposed by
Chang and Malik55 is used in the present PSE calculations. The nor-
mal direction discretization method and the boundary condition
are the same as those of the local LST, whereas a simple second-
order backward finite difference scheme is employed to discretize
the streamwise direction.

C. Multimode decomposition
In this paper, a simple biorthogonal multimode decomposi-

tion scheme is developed to analyze messy perturbations among
boundary layers. This method is essentially consistent with those
proposed by Tumin31,32 and Gao and Luo.56 Since the LST system is
not self-adjoint, its eigenfunctions of the eigenvalue problem and the
corresponding adjoint equation comprise a biorthogonal eigenfunc-
tion system. Therefore, the decomposition coefficients can be eval-
uated with the help of an orthogonality relation. The inner product
between two arbitrary functions is defined according to

⟨A,B⟩ = ∫
∞

0
ATBdy. (12)

Provided αn is the eigenvalue corresponding to the eigenfunc-
tion Φn and αm is the eigenvalue corresponding to the eigenfunction
Ψm of the adjoint equation, with the help of the inner product defi-
nition, the process of deducing the orthogonal relationship is given
as follows:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⟨Ψm, (H0 − αnH1)Φn⟩ = 0,

⟨(HT
0 − αmHT

1 )Ψm,Φn⟩ = ⟨Ψm, (H0 − αmH1)Φn⟩ = 0,
(αn − αm)⟨Ψm, H1Φn⟩ = 0.

(13)

If we have conducted a DNS computation, at a specified loca-
tion, a vector function A0(y)exp(iωt) can be obtained by performing
a temporal Fourier analysis of the unsteady flow. Combining with
the streamwise direction derivative, ΦDNS = (A0, −i∂A0/∂x)T , we can
find the amplitude of a boundary layer mode as follows:

Cα =
⟨Ψn, H1ΦDNS⟩
⟨Ψn, H1Φn⟩

. (14)

The process described above is much simple, and if one has
a spatial LST code, it is straightforward to extend it to multimode
decomposition. However, it should be noted that such a biorthogo-
nal eigenfunction system is homogeneous, i.e., it is only suitable for

a discrete spectrum, but not for a continuous spectrum. Therefore,
for the multimode decomposition of the continuous spectrum, the
method of Tumin32 is preferable.

D. Receptivity model
The receptivity of compressible boundary layers to wall per-

turbations has been solved by Tumin36 based on the biorthogonal
eigenfunction system. Here, a similar receptivity mode is presented
below, which is aimed at the receptivity to the spatial distribution
of plasma actuation. We consider a general case where the bound-
ary layer is subjected to different types of periodic-in-time and z-
direction external disturbances, e.g., sources of mass, momentum,
and energy S(x, y, z, t), and inhomogeneous boundary conditions on
the wall uw(x, z, t) and Tw(x, z, t). In the parallel flow approximation
of the two-dimensional flat-plate boundary layer, the external distur-
bances can be employed; the triple Fourier transform with respect
to x, z, and t, and the examples of source and wall blow-suction
disturbance are as follows:

Ŝ(α,β,ω, y) = 1
TZ ∫

T

0
dt∫

Z

0
dz∫

∞

−∞
S(x, y, z, t)e−iαx−iβz+iωtdx,

(15)

v̂w(α,β,ω) = 1
TZ ∫

T

0
dt∫

Z

0
dz∫

∞

−∞
vw(x, z, t)e−iαx−iβz+iωtdx,

(16)

where T and Z indicate the periods of time and the z-direction,
respectively. The derivation of the orthogonal relationship between
vector ϕ̂ and adjoint vector φ̂ is the same with the process described
above. The adjoint LST equation can be written in the following
form:

L∗0 + αL∗1 φ̂ + α2L∗2 φ̂ = 0, (17)

where the adjoint operators L∗0 ,L∗1 , andL∗2 are obtained by employ-
ing integration by parts and can be found in Appendix B. Imposing
a homogeneous boundary condition for the adjoint vector, one can
obtain the following orthogonality relation based on the definition
of the inner product:

{
α ≠ αs, ⟨φ̂α, [L1 + (α + αs)L2]ϕ̂αs⟩ = 0,

α = αs, ⟨φ̂α, [L1 + (α + αs)L2]ϕ̂αs⟩ = Q.
(18)

Through solving the spatial Cauchy problem under the
assumption of a finite growth rate of the disturbances, Tumin32

demonstrated that the solution of the linearized disturbance equa-
tions can be expanded into the normal modes of continuous and
discrete spectra,

A0(x, y,β,ω) = 1
2π ∫

∞

−∞
ϕ̂αeiαxdα

= ∑
j
∫
∞

0
Cj(k)ϕ̂αj(k)(y, k)eiαj(k)xdk

+∑
m
Cmϕ̂αm(y)eiαmx. (19)

With the help of the above orthogonality relation (18), one can
find the amplitude of a mode to the formal solution,

Ceiαx = ⟨φ̂α, (L1 + 2αL2)A0⟩
Q

. (20)
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Conducting an inner product between φ̂α and the inhomoge-
neous LST equation, the detailed derivation process of the recep-
tivity coefficients will be given as below, which was missing in the
previous paper,

⟨φ̂α, (L0 + αsL1 + α2
sL2)ϕ̂αs − Ŝ⟩

= ⟨φ̂α, (L0 + αL1 + α2L2)ϕ̂αs⟩ − ⟨φ̂α, Ŝ⟩ + ⟨φ̂α, (αs − α)
× [L1 + (αs + α)L2]ϕ̂αs⟩
= ⟨(L∗0 + L∗1 + α2L∗2 )φ̂α, ϕ̂αs⟩

+ B. C. − ⟨φ̂α, Ŝ⟩ + ⟨φ̂α, (αs − α)[L1 + (αs + α)L2]ϕ̂αs⟩ = 0.
(21)

The first term is equal to zero with the definition of the
adjoint equation. The second and third terms represent the forc-
ing from inhomogeneous boundary conditions and sources, respec-
tively. Among them, the explicit expression of the bilinear concomi-
tant B.C. is given in Appendix B.

Based on the orthogonality relation (18) and utilizing (19) and
(20), we can arrive at the following identity:

Ceiαx = 1
2πQ ∫

∞

−∞
⟨φ̂αs , Ŝ⟩ − B.C.
(αs − α)

eiαsxdαs. (22)

At this time, we can find the receptivity coefficient as the residue
value at the pole α = αs,

C = i ⟨φ̂αs , Ŝ⟩ − B.C.
Q

. (23)

III. TEST CASES AND NUMERICAL SETTING
A. Code validation

Two benchmark cases of a periodic-in-time blowing-suction at
supersonic adiabatic flat-plate flows are repeated for the code vali-
dation. Those cases have been analyzed by Balakumar and Malik57

and Tumin.36 In the first example, the Mach number Ma∞ = 2.0
and the dimensionless angular frequency ω = 0.02, corresponding to
a first mode. In the second example, Ma∞ = 4.5 and ω = 0.2, corre-
sponding to a Mack mode. The free-stream stagnation temperature

of 311 K, the Prandtl number Pr of 0.72, and the Reynolds num-
ber Re0 = 1000 were used for both cases. The shape function vw(x,
z, ω) = δ(x − x0)δ(z), where vw is the normal blowing-suction veloc-
ity at the wall and δ is Dirac’s delta function, so v̂w = 1. In addition,
the eigenfunction was normalized by the maximum amplitude of the
streamwise velocity component. One can see an excellent agreement
with Balakumar and Malik57 in Table I, and it can be considered that
the accuracy of the present code in this paper is acceptable.

B. Plasma actuation modeling
A typical surface dielectric barrier discharge (SDBD) actuator

is demonstrated in Fig. 1, and the electrodes are supplied with a
high voltage power, producing a thin plasma layer over the sur-
face of the plate flat. In terms of plasma and flow interaction, since
the plasma generation/propagation time τp ∼ O(ns) ≪ τg ∼ O(μs),
i.e., the characteristic gas dynamic time, the flow condition affected
by the plasma discharge is negligible during a discharge period.
Under this assumption, the plasma distribution can be obtained in
advance and considered as an input source term of N–S equations,
i.e., the computations of plasma dynamics and fluid dynamics are
decoupled.

Both volumetric body force and heating source can be pro-
duced by plasma actuation. The body force induced by the AC SDBD
actuator is usually concerned in subsonic cases, and the accuracy
of the empirical model given by Maden et al.58 has been numer-
ically investigated by Dörr and Kloker.59 However, according to
the experimental measurements by Little et al.60 and Roupassov
et al.,61 the nanosecond pulsed-DC SDBD actuator transfers very
little momentum to the surrounding air, and the actuator-induced
gas velocities show near-zero values. In addition, the body force
induced by the SDBD actuator is mainly due to the negative ion
accumulation inside a volume above the dielectric, whose charac-
teristic time is O(ms). While for the super/hypersonic flow, the
flow passing the plasma actuators is so fast that the body force is
almost negligible. Therefore, only the heating source is taken into
consideration in the present calculations. Recently, an analytical
model based on nanosecond pulsed-DC SDBD physics was devel-
oped by Soloviev and Krivtsov,62 which has been validated by in-
house plasma dynamics solver PASSKEy,63 and the expression for
the distribution of energy deposition is as follows:

TABLE I. Test cases for LST and receptivity analysis codes.

Balakumar and Malik57 This paper

β α |Cs| α |Cs|

Ma∞ = 2.0, Re0 = 1000, and ω = 0.02

0 3.733 × 10−2 − 3.696 × 10−4i 2.2079 × 10−2 3.733 × 10−2 − 3.699 × 10−4i 0.0219
0.08 4.077 × 10−2 − 2.384 × 10−3i 0.2333 4.077 × 10−2 − 2.384 × 10−3i 0.2335

Ma∞ = 4.5, Re0 = 1000, and ω = 0.2

0 0.220 − 3.091 × 10−3i 1.7537 × 10−2 0.220 − 3.093 × 10−3i 0.0175
0.12 0.2181 + 2.969 × 10−4i 1.5405 × 10−2 0.2181 + 2.944 × 10−4i 0.0154
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FIG. 1. Schematic illustration of the SDBD plasma actuator.

FIG. 2. Distribution of the plasma heating source.

S(x, y, t) = Se(t)Smax(1 − x − xb
ls
) y
hs

exp(− y
hs
), 0 < x − xb < ls,

(24)

where xb and ls are the beginning location and streamwise length
of the actuation region, respectively. The energy deposition is con-
centrated in a thin layer near the dielectric surface and coincides
with the streamer diameter,62,63 hs ≈ 0.05 mm. Smax(W/m3) is the
characteristic parameter of energy deposition, which depends on
the plasma power and dielectric thickness. The distribution of the
plasma heating source is illustrated in Fig. 2 as an example. Accord-
ing to the performance of plasma power, the actuation waveform is
usually a periodic pulse signal. In the present study, three waveforms
are selected to evaluate the robustness of plasma actuation, such as
square waves, polynomial waves, and triangular waves. If the plasma
actuator is operated at frequency f s, the function Se(t) of the square
wave is defined as follows:

Se(t) = {
1, mod(t,Ps) ≤Ws

0, mod(t,Ps) ≥Ws,
(25)

where Ps = 1/f s and Ws represent the period and pulse width of
the signal, respectively, whereas the expression of the polynomial
wave is

Se(t) = 20.25( t − ts
Ws
)

5
− 35.4375( t − ts

Ws
)

4

+ 15.1875( t − ts
Ws
)

3
, ts ≤ t ≤ ts + Ws, (26)

where ts is the start time of each actuation period. Such a wave shape
features a gradual increase and relatively fast drop of the discharge
power, which is more consistent with the actual situation. The exam-
ples of three different kinds of waveforms in one cycle are shown in
Fig. 3.

C. Numerical setting of DNS
In DNS computations, non-uniform grids are employed in both

the streamwise and wall-normal directions, and finer grids are clus-
tered in the near-wall region and around the actuation location, as
shown in Fig. 4. A buffer region is imposed as the outflow condition
downstream so that no waves will be reflected back into the com-
putational domain. In all computational cases, more than 40 grid
points are used within one wavelength. In addition, since the pulse
width of actuation is only tens of nanoseconds, the time step of 5 ns
is adopted in the explicit time advancing. Both grid and time step
refinement studies have been conducted to guarantee the conver-
gence of numerical simulation results based on the above setting.
For each DNS case presented below, the unsteady computations are
carried out until the flow field reaches a periodic state. After that, a
temporal Fourier analysis is conducted on the results of the unsteady
flow to obtain the disturbance amplitudes of specific frequency.

IV. RESULTS AND DISCUSSION
The freestream conditions used by Ma and Zhong22 are con-

sidered in the present research, i.e., a Mach 4.5 boundary layer flow
over an adiabatic flat plate in which the instability Mack mode is
dominant. The temperature is T∞ = 65.15 K, and the unit Reynolds
number is Re∞ = 7.2 × 106 m−1.

FIG. 3. Three kinds of wave shapes: (a) square wave, (b)
polynomial wave, and (c) triangular wave.

Phys. Fluids 32, 094102 (2020); doi: 10.1063/5.0016508 32, 094102-6

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 4. Computational grid, every five grid points are displayed.

FIG. 5. Neutral curves of the two-dimensional disturbances.

A. Discrete modes
The characteristic of the discrete spectrum of the high-speed

boundary has been thoroughly studied by Ma and Zhong22 and
Fedorov and Tumin.19 Nevertheless, before studying the receptivity
of plasma actuation, a brief introduction to this problem should be
presented for the sake of research completeness. The neutral curves
of the two-dimensional (β = 0) disturbance are shown in Fig. 5. It

can be seen that the disturbances at f = 75 kHz and f = 150 kHz
are corresponding to the typical first and second modes, respec-
tively. The evolutions of the fast and slow discrete modes at two
different frequencies are presented in Fig. 6. Under such a flow con-
dition, the slow modes become unstable first and second modes
once passing through the lower branch of the neutral curve. For
the discrete spectrum at f = 150 kHz, there is a synchronization
between slow and fast modes, while the synchronization point of
f = 75 kHz is much more downstream, not been seen within this
scope.

We consider a single fast mode imposing at the start location
x = 70 mm, and the amplitude of the maximum streamwise velocity
is 2 × 10−5, which is small enough to preserve the linear properties of
the disturbance. The amplitude of the disturbance along the down-
stream computed by DNS is shown in Fig. 7(a), and the multimode
decomposition to fast and slow modes, as well as linear parabo-
lized stability equation (LPSE) results, is also shown for comparison.
Even though there is no slow mode at the start location, the slow
mode with a small amplitude still appears in the flow field due to
the scattering effect of non-parallel mean-flow. Then, the slow mode
converts to the unstable second mode after synchronizing with the
fast mode.

When the incoming wave is composed of both slow and fast
modes having the same amplitude (2 × 10−5) and frequency (f = 150
kHz), the evolution of such disturbances is presented in Fig. 7(b).
One can see that there is a long-period oscillation before the insta-
bility mode dominates. Such a phenomenon is due to the coexis-
tence of two discrete modes in the boundary layer, i.e., the “beat”
effect, which can be simply interpreted by converting summation to
multiplication of two trigonometric functions with the same period.
In addition, a LPSE calculation of the slow and fast modes is also
shown, and the amplitude is slightly smaller than that of DNS.
The above results confirm the scenario suggested by Fedorov and
Khokhlov.17 Since the decaying mode can give rise to the unsta-
ble mode, which may lead to the transition, both the slow and fast
discrete modes should be considered in the laminar–turbulent tran-
sition. These features of the fast and slow discrete modes of high-
speed boundary layers motivate the research on the receptivity of

FIG. 6. Evolution of the discrete spectrum of perturbations at (a) f = 75 kHz and (b) f = 150 kHz.
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FIG. 7. Evolutions of the disturbance amplitude with different inflow boundary conditions: (a) a single fast mode and (b) the combination of fast and slow modes.

TABLE II. Parameters of numerical simulations performed.

Case Shape xb (mm) ls (mm) f s (kHz) Ws (ns)

S1F1 Square 35 2.0 150 120
S1W1 Square 35 2.0 150 60
T1F1 Triangular 35 2.0 150 120
P1F1 Polynomial 35 2.0 150 120
S1F2 Square 35 2.0 75 120

the decaying mode to the external perturbations, which is important
in different flow control strategies.

B. Response to plasma actuation
The receptivity of the supersonic boundary layer to the periodic

two-dimensional plasma actuation is discussed in this section. For

the plasma actuator, there are five variable parameters by manipulat-
ing the plasma power, i.e., waveform, frequency, period, and width
of the actuation signal, as well as the streamwise length of the actu-
ation region. Five typical cases with different variable parameters
are selected, and the detailed information is presented in Table II.
To study the effect of actuator parameters on the receptivity coeffi-
cient, we keep the total discharge power Pt(W/m) constant if there
is no special statement. Such consideration is preferable in prac-
tical applications because the total power is much easier to con-
trol than the other actuator parameters. The total power Pt can be
computed as

Pt = (∫
Ws

0
dt∫

xb+ls

xb
dx∫

∞

0
S(x, y, t)dy) × fs = constant. (27)

To show the overall feature of the unsteady flow field, Fig. 8
shows the contours of instantaneous pressure and temperature fluc-
tuations induced by the plasma actuation in case S1F1 in which the
total power is equal to 2 W/m. Downstream of the actuation region,

FIG. 8. Contours of instantaneous pressure [(a) and (b)] and temperature (c) fluctuation induced plasma actuation of case SIF1.
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FIG. 9. Evolution of the maximum streamwise disturbance velocity of f s = 150 kHz
in case S1F1.

the excited pressure fluctuations are divided into two branches. One
branch penetrates the external flow outside the boundary layer and
propagates along the Mach lines, i.e., the acoustic wave of the contin-
uous spectrum, which decays downstream due to its inherent stable
property, while the other branch stays within the boundary layer, i.e.,
discrete modes. Such boundary layer modes grow substantially after
passing the lower neutral branch and become the dominant second
mode, which is indicated by the typical wave structures inside the
boundary layer. Similar behaviors of the disturbance field can be
observed in the other four cases.

Figure 9 illustrates the evolution of maximum streamwise dis-
turbance velocity at f s = 150 kHz of case S1F1, and the results by
the multimode decomposition of DNS to fast and slow modes are
presented as well. It can be seen that both the fast and slow modes
can be excited by plasma actuation, and the amplitude of the fast

FIG. 10. Comparison of the eigenfunctions of the slow mode with DNS at x = 180
mm in case S1F1.

FIG. 11. Evolution of the maximum streamwise disturbance velocity of f s = 75 kHz
in case S1F2.

mode is much higher than that of the slow mode. The result of
the LPSE computation of the slow mode started with the amplitude
obtained from the multimode decomposition is presented as well.
Downstream of the actuation region, a “beat” structure appears, and
the slow mode becomes dominant after synchronization with the
fast mode. Figure 10 shows good agreement between eigenfunctions
of the slow mode and the disturbance profiles obtained from DNS at
x = 180 mm.

If we change the waveform or width of the actuation signal in
cases S1W1, T1F1, and P1F1, but keep the total power constant,
interestingly, the evolutions of disturbances in those cases are the
same as that of case S1F1. In case S1F2, the plasma actuation at the
frequency of f s = 75 kHz is imposed. Figure 11 shows the distur-
bance evolutions of f s = 75 kHz computed by DNS and also includes
the multimode decomposition results. In addition, the result of the
LPSE computation started with the amplitude obtained from the

FIG. 12. Fourier components of 75 kHz multiplication in (a) case S1F2 and (b)
cases S1F1, S1W1, T1F1, and P1F1.
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FIG. 13. Receptivity coefficients of plasma actuation at different streamwise locations: (a) f s = 150 kHz and (b) f s = 75 kHz. Theoretical results are denoted by lines, and DNS
results are denoted by symbols.

multimode decomposition is presented as well. According to the dis-
crete spectrum of f = 75 kHz in Fig. 6, there is no synchronization
between fast and slow modes, and so the co-existence of two modes
can hold for a long distance. However, the disturbance amplitude of
f s = 150 kHz in this case is also consistent with that of case S1F1.
This phenomenon can be interpreted by temporal Fourier analysis
of the function Se(t). Because the plasma actuation signal is a typi-
cal periodic pulse signal, the Fourier components with multiples of
actuation frequency can be excited effectively. The amplitude coeffi-
cients of different frequency components are presented in Fig. 12,
and their amplitudes have been normalized to unity by the same
value for ease of comparison. It can be seen that the signal ampli-
tude of 150 kHz is the same in all cases described above, and so
the same disturbance evolution of the corresponding frequency is
expected. It should be noted that the disturbance of f = 300 kHz is
also excited, while it decays quickly downstream according to the
neutral curve in Fig. 5; as a result, only the f = 150 kHz instability
mode dominates in far downstream. In other words, even though
only low-frequency actuations are imposed, the high-frequency dis-
turbances can be effectively excited in the boundary layer, which
is qualitatively consistent with the experimental results of Li and
Zhang64 and Li et al.65 In their experiments, the glow discharge was
introduced as an artificial disturbance, whose discharge character-
istics are essentially consistent with the SDBD actuator considered
in the present study. Their experimental results demonstrate that
even though only the artificial disturbance in the first mode fre-
quency range is introduced, the other modes of frequency multipli-
cation can be excited as well. Among them, the Mack mode with
the highest growth rate becomes the dominant one in the boundary
layer.

C. Parameters research of receptivity coefficients
In this section, theoretical analysis and many cases of DNS

computation are conducted to investigate the effect of the stream-
wise location and the width of the actuator on the receptivity coef-
ficients. Figures 13(a) and 13(b) show the maximum streamwise
disturbance velocity of fast and slow modes excited by plasma actu-

ations at different streamwise locations. Consistent with the study
above, two typical actuation frequencies of 150 kHz and 75 kHz are
considered here, which correspond to the first and second modes,
respectively. In all cases of Figs. 13(a) and 13(b), the streamwise
width of the actuation region is 2 mm, and the total power is main-
tained at 2 W/m. With the help of the multimode decomposition, the
amplitudes of discrete modes are filtered out from the DNS com-
putations at the center of the actuation region. One can see that
amplitudes predicted by the receptivity model reach good agree-
ment with those of numerical calculations at both 150 kHz and
75 kHz.

For the plasma actuation of 75 kHz, the receptivity coefficients
of the slow mode decrease when the actuator shifts from upstream
to downstream, whereas the fast mode shows the opposite trend.
For the actuation frequency of 150 kHz, the receptivity coefficients

FIG. 14. Receptivity coefficients of plasma actuation with different streamwise
widths at two different streamwise locations xb = 35 mm and xb = 150 mm.
Theoretical results are denoted by lines, and DNS results are denoted by symbols.
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FIG. 15. Evolution of maximum streamwise at the disturbance velocity of f s = 150
kHz excited by plasma actuation at different streamwise locations.

of the fast mode also increase gradually with the actuation mov-
ing toward the synchronization point but decrease at the down-
stream of the lower branch of neutral curve, where the slow mode is
synchronized with the fast mode. The slow mode only decreases
slightly near the leading-edge region, and the behavior of down-
stream is similar to that of the fast mode. Such an effect of the region
location on the receptivity coefficients is consistent with the research
results of wall blowing-suction perturbation, which were obtained by
Tumin et al.34 and Wang et al.30

When the location and total power of the actuation remain
unchanged, the effect of the streamwise length of the actuation
region on the receptivity coefficients is presented in Fig. 14. When
the actuation is located upstream or downstream of the synchroniza-
tion point, the receptivity coefficients both decrease with a longer
actuation region.

FIG. 16. A comparison between the theoretical method and DNS for the dis-
turbance amplitude at x = 200 mm excited by plasma actuation at different
streamwise locations.

FIG. 17. The disturbance amplitude of f s = 75 kHz and f s = 150 kHz at x = 200
mm excited plasma actuation with increasing total power.

For practical transition control technology, the excited dis-
turbance amplitude at the downstream of the actuation region is
much more concerned, which can explicitly reflect the efficiency of
the actuator. Figure 15 illustrates the evolution of the maximum
streamwise disturbance velocity excited by the plasma actuation of
f s = 150 kHz at six different locations, and even though the instanta-
neous flow field near the actuation is complex, the instability bound-
ary mode becomes dominant far downstream from the lower neutral
branch, whose growth rates can be obtained by LPSE computations.
One can note that when the actuator is located near the synchroniza-
tion point, the disturbance amplitudes are almost equal. For the sake
of comparison, the disturbance amplitudes at x = 200 mm excited
by plasma actuation at different streamwise locations are plotted in
Fig. 16. We consider a theoretical prediction method by the combi-
nation of receptivity model and LPSE, i.e., the amplitude of the slow
mode predicted by the receptivity mode is used as the initial value
of LPSE computation, and the disturbance growth downstream can
be obtained. The results computed by such a method are presented
in Fig. 16. It can be seen that the agreement between the theoretical
method and DNS near the synchronization point or lower neutral
branch is not as good. As discussed by Fedorov and Khokhlov,17

there is an intermodal exchange near the synchronization point,
which results in that the normal mode decomposition is not valid.
This means that the non-parallel effect and multimode characteristic
have to be considered near this region.

When the actuator parameters are set as the same as case S1F2,
increasing the total power, the excited disturbance amplitudes at
x = 200 mm are presented in Fig. 17. The linear receptivity process
is also validated even when the total power reaches up to 40 W/m,
and a receptivity efficiency function of Λ = |u′|/Pt can be obtained,
which plays a useful guiding role in engineering applications.

V. CONCLUSIONS
In this paper, the receptivity of a Mach 4.5 flat-plate bound-

ary layer to plasma heating source actuation has been studied by
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DNS and stability analysis. The objective of the current research
is to evaluate the receptivity of the pulsed-DC SDBD plasma actu-
ator as a novel flow control technology for the boundary layer
transition. The main conclusions of the current research are as
follows:

(1) Because the plasma actuation is typical periodic pulse signals,
when the total power remains constant, the Fourier compo-
nents with multiples of the actuation frequency have the same
energy, regardless of the waveform, period, and width of the
actuation signal. As a result, the same response of the bound-
ary layer to plasma actuation at the corresponding frequency
is expected. Such characteristics benefit the robustness of the
plasma actuator. In addition, the above research findings can
be used to qualitatively explain the experimental results of Li
and Zhang64 and Li et al.65

(2) Inspired by Tumin,31–33 a simple scheme of biorthogonal
multimode decomposition is developed. With the help of the
multimode decomposition technique, the amplitude of con-
cerned discrete modes can be obtained. The numerical results
demonstrate that both fast and slow modes can be excited
by plasma actuation. The effect of the actuation streamwise
location on the receptivity coefficients is similar to wall
blowing-suction perturbation,30,34 and the receptivity maxi-
mum is observed near the lower neutral branch, where the
slow mode is synchronized with the fast mode. In addition, if
maintaining the total power fixed, the receptivity coefficients
decrease with a longer actuation region. The above results
of parameter research may provide better plasma actuator
strategies.

(3) A theoretical prediction method by the combination of the
receptivity model and LPSE is considered in the present
study. A good agreement with the DNS results is reached,
except near the synchronization point in which the non-
parallel effect and multimode interaction17,27 can no longer
be neglected. Nevertheless, such a rapid theoretical prediction
is acceptable in practical engineering applications, and feed-
back control can be conducted by manipulating plasma power
supply. Besides, only the results of the two-dimensional actu-
ation (β = 0) are presented in this paper, but a similar behav-
ior of receptivity can be obtained with the three-dimensional
actuation.
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APPENDIX A: NONZERO ELEMENTS
OF THE OPERATORS IN EQ. (4)

Γ11 = 1.0, Γ22 = ρ̄, Γ33 = ρ̄, Γ44 = ρ̄, Γ51 =
1 − γ
γ

T̄, Γ55 =
ρ̄
γ

,

A11 = ū, A12 = ρ̄,

A21 =
T̄

γMa2 , A22 = ρ̄ū −
4
3

1
Re0

∂μ̄
∂x

, A23 = −
1
Re0

∂μ̄
∂y

,

A25 =
ρ̄

γMa2 −
1
Re0

∂μ̄
∂T
(4

3
∂ū
∂x
− 2

3
∂v̄

∂y
),

A32 =
2
3

1
Re0

∂μ̄
∂y

, A33 = ρ̄ū−
1
Re0

∂μ̄
∂x

, A35 = −
1
Re0

dμ̄
dT̄
(∂ū
∂y

+
∂v̄
∂x
),

A44 = ρ̄ū −
1
Re0

∂μ̄
∂x

, A51 =
1 − γ
γ

T̄ū,

A52 =
(1 − γ)Ma2μ̄

Re0
(8

3
∂ū
∂x
− 4

3
∂v̄

∂y
), A53 =

2(1 − γ)Ma2μ̄
Re0

(∂v̄
∂x

+
∂ū
∂y
),

A55 =
ρ̄ū
γ
− 1

Re0Pr
(∂μ̄
∂x

+
dμ̄
∂T̄

∂T̄
∂x
);

B11 = v̄, B13 = ρ̄,

B22 = ρ̄v̄−
1
Re0

∂μ̄
∂y

, B23 =
2
3

1
Re0

∂μ̄
∂x

, B25 = −
1
Re0

∂μ̄
∂T
(∂ū
∂y

+
∂v̄
∂x
),

B31 =
T̄

γMa2 , B32 = −
1
Re0

∂μ̄
∂x

, B33 = ρ̄v̄ −
4
3

1
Re0

∂μ̄
∂y

,

B35 =
ρ̄

γMa2 −
1
Re0

dμ̄
dT̄
(−2

3
∂ū
∂x

+
4
3
∂v̄
∂y
),

B44 = ρ̄v̄−
1
Re0

∂μ̄
∂y

, B51 =
1 − γ
γ

T̄v̄, B52 =
2(1 − γ)Ma2μ̄

Re0
(∂ū
∂y

+
∂v̄
∂x
),

B53 =
(1 − γ)Ma2μ̄

Re0
(8

3
∂v̄
∂y
− 4

3
∂ū
∂x
), B55 =

ρ̄v̄
γ
− 1
Re0Pr

(∂μ̄
∂y

+
dμ̄
dT̄

∂T̄
∂y
);

C14 = ρ̄, C24 =
2
3

1
Re0

∂μ̄
∂x

, C34 =
2
3

1
Re0

∂μ̄
∂y

,

C41 =
T̄

γMa2 , C42 = −
1
Re0

∂μ̄
∂x

, C43 = −
1
Re0

∂μ̄
∂y

,

C45 =
ρ̄

γMa2 −
1
Re0

dμ̄
dT̄
(−2

3
∂ū
∂x
− 2

3
∂v̄

∂y
),

C54 =
(1 − γ)Ma2μ̄

Re0
(−4

3
∂ū
∂x
− 4

3
∂v̄
∂y
);

D11 =
∂ū
∂x

+
∂v̄
∂y

, D12 =
∂ρ̄
∂x

, D13 =
∂ρ̄
∂y

,
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D21 = ū
∂ū
∂x

+ v̄
∂ū
∂y

+
1

γMa2
∂T̄
∂x

, D22 = ρ̄
∂ū
∂x

, D23 = ρ̄
∂ū
∂y

,

D25 =
1

γMa2
∂ρ̄
∂x
− 1
Re0

∂

∂x
( dμ̄
dT̄
)(4

3
∂ū
∂x
− 2

3
∂v̄

∂y
) − 1

Re0

∂

∂y
( dμ̄
dT̄
)

×(∂ū
∂y

+
∂v̄
∂x
) − 1

Re0

dμ̄
dT̄
(4

3
∂2ū
∂x2 +

∂2ū
∂y2 +

1
3

∂2v̄
∂x∂y

),

D31 = ū
∂v̄
∂x

+ v̄
∂v̄
∂y

+
1

γMa2
∂T̄
∂y

, D32 = ρ̄
∂v̄
∂x

, D33 = ρ̄
∂v̄
∂y

,

D35 =
1

γMa2
∂ρ̄
∂y
− 1
Re0

∂

∂x
( dμ̄
dT̄
)(∂ū

∂y
+
∂v̄
∂x
) − 1

Re0

∂

∂y
( dμ̄
dT̄
)

×(−2
3
∂ū
∂x

+
4
3
∂v̄
∂y
) − 1

Re0

dμ̄
dT̄
(4

3
∂2v̄
∂y2 +

∂2v̄
∂x2 +

1
3

∂2ū
∂x∂y

),

D51 =
ū
γ
∂T̄
∂x

+
v̄

γ
∂T̄
∂y

, D52 =
ρ̄
γ
∂T̄
∂x

+
1 − γ
γ

T̄
∂ρ̄
∂x

,

D53 =
ρ̄
γ
∂T̄
∂y

+
1 − γ
γ

T̄
∂ρ̄
∂y

, D55 =
1 − γ
γ
(ū∂ρ̄

∂x
+ v̄

∂ρ̄
∂y
),

D55 =
1 − γ
γ
(ū∂ρ̄

∂x
+ v̄

∂ρ̄
∂y
) − 1

Re0Pr
( ∂

∂x
( dμ̄
dT̄
)∂T̄
∂x

+
∂

∂y
( dμ̄
dT̄
)∂T̄
∂y

+
dμ̄
dT̄

∂2T̄
∂x2 +

dμ̄
dT̄

∂2T̄
∂y2 ) −

(γ − 1)Ma2

Re0

× dμ̄
dT̄

⎡⎢⎢⎢⎢⎣

4
3
(∂ū
∂x
)

2
+

4
3
(∂v̄
∂y
)

2

− 4
3
∂ū
∂x

∂v̄
∂y

+ (∂ū
∂y

+
∂v̄
∂x
)

2⎤⎥⎥⎥⎥⎦
;

Vxx
22 =

4
3

μ̄
Re0

, Vxx
33 = Vxx

44 =
μ̄
Re0

, Vxx
55 =

μ̄
Re0Pr

;

Vyy
22 =

μ̄
Re0

, Vyy
33 =

4
3

μ̄
Re0

, Vyy
44 =

μ̄
Re0

, Vyy
55 =

μ̄
Re0Pr

;

Vzz
22 =

μ̄
Re0

, Vzz
33 =

μ̄
Re0

, Vzz
44 =

4
3

μ̄
Re0

, Vzz
55 =

μ̄
Re0Pr

;

Vxy
23 = V

xy
32 =

1
3

μ̄
Re0

;

Vxz
24 = Vxz

42 =
1
3

μ̄
Re0

;

Vyz
34 = V

yz
43 =

1
3

μ̄
Re0

.

APPENDIX B: THE BIORTHOGONAL EIGENFUNCTION
SYSTEM

In Sec. II, the LST operator is expressed as

L0 + αL1ϕ̂ + α2L2ϕ̂ = 0,

where

L0 = D + iβC − iωΓ + β2Vzz + (B − iβVyz)
∂

∂y
− Vyy

∂2

∂y2 ,

L1 = iA + βVxz − iVxy
∂

∂y
, and L2 = Vxx.

The adjoint operator and bilinear concomitant B.C. can be obtained
by performing integration by parts,

L∗0 + αL∗1 φ̂ + α2L∗2 φ̂ = 0,

where

L∗0 = DT + iβCT − iωΓT + β2VT
zz −

∂(B − iβVyz)T

∂y
−
∂2VT

yy

∂y2

−
⎛
⎝
BT − iβ

∂VT
yz

∂y
+ 2

∂VT
yy

∂y
⎞
⎠
∂

∂y
− VT

yy
∂2

∂y2 ,

L∗1 = iAT + βVT
xz + i

∂VT
xy

∂y
+ iVT

xy
∂

∂y
, and L∗2 = VT

xx.

Taking into account the explicit forms of the LST operator and
the homogeneous boundary conditions of the adjoint equation, the
B.C. can be derived as follows:

B.C. = ρ̄wρ̂∗wv̂w +
μ̄
Re0

∂û∗w
∂y

ûw +
3μ̄

4Re0

∂v̂∗w
∂y

v̂w

+
μ̄
Re0

∂ŵ∗w
∂y

ŵw +
μ̄

Re0Pr
∂T̂∗w
∂y

T̂w,

where the superscript ∗ and subscript w indicate the adjoint eigen-
functions and the variables at the wall, respectively.
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