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Abstract
A homogeneous discharge with a large volume is a desirable plasma source for many
applications. Nanosecond-pulsed high-voltage (HV) excitation is believed to be a promising
strategy for obtaining homogeneous or diffuse discharges at atmospheric pressure. In this paper,
using a knife–plate geometry driven by a nanosecond-pulsed generator, a diffuse plasma sheet
with a gap distance of 1 cm and a length of 12 cm is generated in atmospheric air, maintaining a
low gas temperature of ∼330 K. However, time-resolved images reveal that the discharge,
which appears diffuse to the naked eye, actually consists of multiple individual streamers that
propagate from knife (HV) to plate (ground). The appearance of two processes, namely primary
and secondary streamers, is consistently verified by discharge images, electric field evolution
and fluid simulation. This further proves that the entire discharge belongs to an intermediate
state between corona and spark. This work aids a deeper understanding of the intrinsic
characters of similar diffuse discharges and optimizing parameters in practical applications.

Keywords: nanosecond pulsed discharge, diffuse plasma sheet,
electric field-induced second-harmonic, plasma modeling, fluid model

(Some figures may appear in color only in the online journal)

1. Introduction

Atmospheric pressure non-thermal plasmas have received
much attention due to their potential for use in many applic-
ations [1, 2], such as hydrogen production [3], surface modi-
fication [4, 5], biomedical sterilization [6, 7] and flow control
[8, 9]. To improve application efficiency and control precision,
homogeneous discharges with a large volume are more desir-
able [10, 11]. Typically, the high collision frequency in the
atmosphere easily induces thermal-ionization instability and

∗
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leads to a glow-to-arc transition [12, 13], whichmakes the gen-
eration of a homogeneous discharge challenging [14, 15].

With the development of nanosecond pulsed power tech-
nology, many efforts have been devoted to the formation
of stable homogeneous discharges. With a sufficiently high
pre-ionization level, electron avalanches can overlap before
streamer formation [16–18]. Studies of volume discharges can
be traced back to the middle of the last century [19–22]. By
using x-rays as the pre-ionization source, a spatially homogen-
eous self-sustained discharge with a volume of several liters
has been successfully generated at atmospheric pressure [22].
Even though the introduction of a dielectric barrier can stop
streamer development and restrain the thermalization of the
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plasma channel, the limited gap distance restricts its available
processing volume and is unfavorable for large-scale applic-
ations [14, 23]. With a repetition frequency of 40 kHz, the
largest homogeneous discharge gap is extended up to 7 mm
with dense seed electrons due to memory effects and a reduced
gas density at a high temperature of 1300 K [10], which may
be unsuitable for heat-sensitive applications such as biomed-
ical engineering [24].

Unlike the plasma sources mentioned above, and without
additional pre-ionization sources, a barrier-free diffuse dis-
charge characterized by a large volume can be generated in
an extremely inhomogeneous electric field [25–31]. As repor-
ted in [25, 26, 30], the gap bridged by diffuse discharges
can reach several centimeters and no filaments or constric-
ted channels are observed. A diffuse discharge can be gen-
erated under a flexible electrode geometry [25, 26, 32] and
maintained over a wide range of operating parameters, such
as pressure, gas type and mixture ratio, showing great poten-
tial for practical applications [33–35]. When applied with a
high over-voltage and sub-nanosecond voltage fronts, a single
large-volume streamer with a radius of several millimeters
can be produced [25, 26, 30, 36]. Under these conditions run-
away electrons may be generated and have an impact on dis-
charge dynamics by providing a relatively high pre-ionization
level [26, 30, 36]. However, if the high over-voltage level is
decreased and the voltage rise time increased to several hun-
dred nanoseconds, the diffuse form of the discharge can be
maintained under an extremely inhomogeneous electric field,
i.e. the knife–plate electrode configuration [37], but the tem-
poral evolution of discharge during the ignition, propagation
and connection of the electrode gap may be very different
from the volume discharge. The reason for this is still not fully
understood.

In this work, a transverse diffuse discharge is generated
with a 1 cm air gap. Electrometry characteristics and dynam-
ics of plasma propagation under a knife–plate geometry are
investigated by experiments and numerical simulations.

2. Experimental methods and model description

Figure 1(a) shows the experimental electrode configuration
and discharge image with an exposure time of 1 ms. The elec-
trode system consists of a stainless-steel knife with length of
10 cm and thickness of 400 µm, and a copper plate with a
length of 12 cm and width of 2.5 cm, between which a gap of
1 cm is kept. The knife is connected to a high-voltage (HV)
unipolar positive nanosecond-pulse generator (Xi’an Ling-
feng Electric Technology Co., Ltd) while the plate is groun-
ded. The minimum rise time of the output voltage is ∼50 ns
and the maximum amplitude is ∼23 kV. The repetition fre-
quency of the voltage pulse is fixed at 50 Hz. Experiments
were carried out in ambient air at atmospheric pressure at a
temperature of around 25 ◦C and humidity of around 30%.
As shown in the integral discharge image, a transverse uni-
form plasma sheet under the knife tip can be directly observed
by the naked eye. The emitted luminosity is very intense near

the HV electrode, and no filaments or constricted channels are
formed.

The voltage waveform on the knife electrode is monitored
by a HV probe (Tektronix, P6015A) and the current waveform
is measured by a current probe (Pearson, 6595), both of which
are recorded simultaneously by a digital oscilloscope (Lec-
roy WR204Xi). An intensified charge-coupled device (ICCD;
Andor iStar sCMOS) camera is used to capture the discharge
dynamics in the visible domain. Optical emission spectro-
scopy of the discharge is done with a spectrometer (PG-2000-
Pro). Moreover, the electric field-induced second-harmonic
(E-FISH) generation system is used to measure the temporal
evolution of the electric field at different points within the gap
[38, 39]. The 1064 nm fundamental output of a nanosecond
Nd:YAG laser (Beamtech SGR-S400, pulse width 7–9 ns, and
pulse energy ∼15 mJ) is focused on the discharge region,
which remains parallel to the knife tip. The radius of a laser
beam at the focus, measured by traversing a knife edge across
the laser beam, is approximately 130 µm [38]. When using a
lens with a shorter focal length, the beam radius around the
focus will be less and the spatial resolution of the E-FISH
measurement will be improved [40]. The intensities of the fun-
damental laser and the second-harmonic signal are detected
by a photodiode (Thorlabs, DET10A2) and a photomultiplier
(Hamamatsu, R1828-01), respectively. The calibration of the
E-FISH signal is based on a parallel-plate electrode system
(34 mm × 12 mm, gap 2.5 mm).

In this work, simulation is conducted with the two-
dimensional (2D) PASSKEy (Parallel Streamer Solver with
KinEtics) code [41], which has been used in modeling
nanosecond-pulsed discharges [42–44]. Continuity equations
with the drift-diffusion approximation, the energy conserva-
tion equation for mean electron energy, Poisson’s equation
for electric field and Helmholtz equations for photoioniza-
tion are taken into account. Detailed descriptions of numerical
approaches and mathematical formulations can be found in
[43, 44]. As shown in figure 1(b), a 2D computational domain
of size 3 cm× 2 cm is set up based on Cartesian (xy) coordin-
ates, in which a 1 cm gap is adopted to approximate the side of
a three-dimensional (3D) knife–plate configuration. The knife
with a thickness w = 400 µm and tip radius rtip = 15 µm is
driven by a positive voltage pulse smoothed from themeasured
voltage, while the plate is grounded. A uniform mesh size of
8 µm is applied for the plasma domain and refined to 2 µm
near the knife tip. Beyond the plasma domain, the mesh size
grows exponentially. The plasma kinetics scheme for N2/O2

includes 15 species and 34 reactions. Detailed reactions and
corresponding rates can be found in [43].

The numerical simulation mainly focuses on the case con-
taining a series of pulses, not the very first pulse. The initial
electron density before the next pulse can be enhanced. During
the interval between two consecutive nanosecond pulses, the
electron density ne decays due to dissociative recombination
[45, 46]

ne (t)≈
ne,max

1+ krne,maxt
.
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Figure 1. Geometric configuration of the knife–plate electrode and discharge image with an exposure time of 1 ms (a). Schematic of the
computational domain in Cartesian coordinates (b).

Since O+
4 is the main positive ion in the discharge chan-

nel during the late afterglow for atmospheric air [47], kr =
1.4× 10−12(300/Te)

0.5 is taken as the dissociative recom-
bination of electrons with O+

4 ions [45, 46]. The maximum
electron density ne,max is around 1020 m−3 (details are shown
in the appendix) and t is 20 ms with pulse repetition of
50 Hz. When Te changes from 1 to 0.1 eV, kr changes from
2.25× 10−13 m3 s−1 to 7.12× 10−13 m3 s−1, thus ne0 changes
from 2.22 × 1014 m−3 to 7.02 × 1013 m−3 before the next
pulse. As for the initial electron density, when the change
exceeds more than an order of magnitude it may have a signi-
ficant impact on the discharge properties. Thus, in the model,
ne0 = 1014 m−3 distributes uniformly in the plasma domain
and the initial ion density is given based on quasi-neutrality.

3. Results and discussion

Figure 2(a) presents the waveforms of voltage and current
obtained by measurement and simulation, respectively. The
voltage pulse (Vexp) with a rise time of 50 ns, full width at
half maximum (FWHM) of 130 ns and an amplitude of 15 kV
is used to generate the diffuse plasma sheet. As for the meas-
ured total current waveform Iexp, two wider current peaks with
different polarities appear in the rising and falling edges of
Vexp, while one small peak with 6.4 A appears in the plateau.
The displacement current obtained from C × dV/dt contrib-
utes to the majority of Iexp except for the plateau phase of Vexp,
where C is the capacitance of the electrode system and dV/dt
is the time derivative of Vexp. The conductive current Ic can
be estimated by the difference between Iexp and C × dV/dt,
which reaches its maximum value at∼90 ns. Before the break-
down occurs, the measured current and the displacement cur-
rent are theoretically identical. However, since the conductive
current Ic is estimated from the difference between the two
close values of Iexp andC× dV/dt, the errors introduced by the

differentiation process cause the fluctuations of Ic to be amp-
lified. The signal delay on the cable also makes it difficult for
Iexp andC× dV/dt to be completely consistent. Besides, due to
the existence of stray capacitance and inductance in the circuit,
some fluctuations are generated for Iexp. Thus, the obtained
conductive current Ic presents some fluctuations before break-
down occurs and during the decline of the voltage pulse.

As for simulation, the waveform of Vsim smoothed from
Vexp is adopted as the input voltage. The calculated current
Isim is the integral of fluxes of negative and positive charges
through the surface of the HV electrode, consisting of a small
spike of 1.1 A at 57 ns and a large peak of 7.3 A at 87 ns.
The latter qualitatively agrees with Ic in both amplitude and
temporal phase. The fact that the two current peaks have the
same polarity indicates the presence of primary and second-
ary streamers in the discharge gap, different from the usual
second current peak at the voltage falling phase which is due to
a reversed electric field [48]. Similar phenomena can be found
in other works [49, 50].

As shown in figure 2(b), the optical emission spectrum ran-
ging from 280 to 430 nm is collected from the diffuse plasma
sheet. It is clear that for the nanosecond-pulsed knife–plate
discharge, the emission spectrum is dominated by the second
positive system ofmolecular nitrogenN2(C3Πu–B3Πg). By fit-
ting the measured spectrum of N2(C3Πu–B3Πg) with the Spe-
cair program [51], the rotational (T rot = 330 K) and vibra-
tional (Tvib = 3310 K) temperatures of N2 are obtained.
Since Tvib is much higher than T rot, the extremely non-
equilibrium plasma sheet enhances chemical activity [10],
occupying unique advantages in diverse applications such as
processing of heat-sensitive materials and sterilization of bio-
logical tissue.

Figure 3 shows the evolution of single-shot images for the
knife–plate discharge taken by an ICCD camera during the
voltage pulse. The gate width of the ICCD is 3 ns and the delay
time between the two consecutive images is 2 ns. The image of
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Figure 2. Waveforms of voltage and current from both measurement and simulation (a) and optical emission spectrum of the discharge (b).

Figure 3. Temporal evolution of the knife–plate discharge (camera gate 3 ns) with a peak voltage of 15 kV taken by an ICCD camera
(single-shot). The entire pulse image is also shown (camera gate 150 ns).

one discharge pulse with a gate of 150 ns is also presented. The
two dashed lines indicate the location of the knife and plate
electrodes, respectively. As shown in the single-shot image,
the plasma sheet, which appears uniform to the naked eye,
actually consists of multiple individual streamers, whose light
emission is more intense near the knife tip but becomes rather
weak below it. At 52 ns, a weak luminous spot is generated at
the knife tip and no plasma can be found before that, indicating
discharge breakdown (primary streamer). Afterwards, several
discharge spots gradually appear at different locations along
the knife tip and propagate towards the plate (52–72 ns). A
dark region is left behind the primary streamer fronts. At 68 ns,
one streamer reaches the plate first and then more stream-
ers arrive step by step (72 ns). The mean propagation velo-
city of the primary streamers can be roughly estimated as
(5.0–6.3) × 105 m s−1.

After reaching the ground, primary streamers quickly
extinguish while multiple luminous channels, i.e. secondary
streamers, appear again in the vicinity of the knife tip, which
looksmuch brighter than the former.When a pre-ionized chan-
nel is present the electric field E is much lower than that of the
primary streamer [50, 52, 53]. Thus, secondary streamers only
propagate about 3–4 mm away from the HV electrode, i.e. the

secondary streamers do not punch through the discharge gap.
During the period with secondary streamers, luminescence
exists along the entire discharge gap due to the left-over chan-
nel of primary streamers. The entire discharge is more intens-
ified than a corona, but is inhibited from transition to a spark
[26]. The development of secondary streamers is very rapid,
but can be maintained for a relatively long time (72–90 ns).
Subsequently, secondary streamers fade away until they are
completely extinguished at 160 ns as the voltage continues to
decrease.

The calculated temporal evolutions of ne, N2(C3∏u) density
and E are shown in figure 4. The maximum electron density
occurs at the HV electrode first, then decreases slightly dur-
ing the propagation of the primary streamer and rises again as
the plate is approached. After the discharge front has passed
by, the reduction of Te in the channel makes ne decrease
due to rapid recombination processes, for example e+O+

4 →
2O+O2 with a rate of 1.4× 10−12(300/Te)

0.5 [45, 46], espe-
cially near the HV electrode. The drop in ne weakens the
shielding effect caused by space charge in the channel, and the
high potential applied on the HV electrode is maintained; both
these effects make E near the knife tip exceed the breakdown
threshold again and trigger the secondary streamer [45].

4
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Figure 4. Temporal evolution of calculated ne (a), N2(C3∏u) (b) and E (c) along the streamer propagation axis x = 1.5 cm, and dynamics
(location and velocity) of the ionization front obtained by measurement and simulation (d).

Moreover, since the discharge emission intensity is pro-
portional to molecular density on the upper energy level
of the spectral band, the distribution of N2(C3Πu) can be
used to characterize the discharge kinetics [42]. During the
primary streamer propagation, the maximum N2(C3Πu) dens-
ity is mainly concentrated on the discharge front and rapidly
diminishes after the front passes. In contrast, as for the sec-
ondary streamer, N2(C3Πu) density keeps a continuous profile
along the discharge channel and decays slowly versus time.
The calculated discharge dynamics and morphology are con-
sistent with the ICCD images.

The maximum E appears at the front of the primary
streamer, while during the secondary streamer phase E is uni-
formly distributed along the discharge channel near the knife
tip and drops remarkably in the remaining gap. Between the
primary and secondary streamers, a return stroke propagates
towards the anode at an extremely fast velocity. A similar phe-
nomenon is also obtained in both experiments and simulations
[31, 36, 50, 52, 53].

Figure 4(d) presents the locations of the measured and cal-
culated discharge fronts (P, hollow symbols) and correspond-
ing instantaneous speeds (V, solid symbols) for the primary (I)
and secondary streamers (II), respectively. The position of the
maximum N2(C3Πu) at x = 1.5 cm is selected to represent the
location of the discharge front. It is clear that the calculated
primary streamer ignites at ∼56 ns and reaches the ground at
∼87 ns, taking about 31 ns to penetrate the discharge gap. Its
speed continues to increase during the propagation and shows

a significant increment as it approaches the ground. As for the
secondary streamer, the farthest reachable distance from the
HV electrode (∼4 mm) is obtained at 98 ns and its propaga-
tion velocity first increases and then drops remarkably within
∼8 ns. Thus, the small spike in Isim indicates the initiation of
the primary streamer, and the large peak is contributed by both
the breakdown of the primary streamer and the initiation of the
secondary streamer.

For comparison, the discharge dynamics of the fastest batch
of primary streamers obtained from ICCD images are also
shown. Obviously, in the experiment, it takes less time to
cross the discharge gap. Note that, the knife–plate discharge
is essentially a 3D phenomenon and the radius of curvature
of the steamer head should be smaller than in 2D simulation
[54]. Besides, the selection of rtip for the knife in the simu-
lation greatly affects the discharge properties. A smaller rtip
enhances the discharge intensity. The roughness of the knife
electrode causes streamers to ignite at different locations in the
experiments. Nevertheless, as more primary streamers arrive
at the ground, the discharge current pulse Ic reaches its max-
imum gradually at around 90 ns, showing excellent agreement
with Isim, as shown in figure 1(a).

Figure 5(a) presents the temporal evolution of the measured
electric field at different locations by the E-FISH method. As
the voltage begins to increase, E first increases near the HV
electrode (1.0 cm), while it remains unchanged close to the
ground (0.0 cm), which also means that it is a Laplacian field
before the breakdown happens. After E at the knife tip reaches
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Figure 5. Temporal evolution of measured (a) and calculated (b) E at different locations in the knife–plate discharge gap. Convolution of
calculated E with a Gaussian laser pulse (c).

a peak of 34 kV cm−1, it starts to drop and then a decrease
in the amplitude of E also occurs at locations further away
from the HV electrode, indicating the process of propaga-
tion of the primary streamer. Subsequently, only E near the
knife tip increases again and reaches its second peak, which
corresponds to the secondary streamer. When the applied
voltage decreases, E in the discharge gap diminishes to a low
level.

Similarly, in the simulation, a two-peak feature is observed
for the electric field near the knife and in the middle of dis-
charge gap, but only one peak is obtained near the plate
(figure 5(b)). The second peak of the calculated E near the
knife tip corresponds to the secondary streamer, while near the
plate it is induced by a reverse ionization wave as the primary
streamer approaches the plate.

However, the most distinct difference between the meas-
urement and simulation is that the peak value of the electric
field in the simulation is more than four times higher than the
measured one. This is due to the extremely fast propagation
speed and the limitation of temporal resolution of the E-FISH
system (7–9 ns) [38]. As shown in figure 5(c), after convo-
lution between the calculated E and a Gaussian laser pulse
(FWHM ∼ 8 ns), an average electric field can be obtained,

which is closer to the measured E. Thus, although the nano-
second E-FISH system can measure the variation of E in a
shorter time than the laser pulse [55], the peak is greatly under-
estimated, especially during streamer development. For fur-
ther investigation, a femtosecond or picosecond laser is more
desirable [40, 56].

4. Summary and conclusions

In summary, characteristics of the knife–plate discharge oper-
ated in atmospheric pressure air were studied experimentally
and numerically. Excited by a nanosecond-pulsed generator, a
diffuse plasma sheet was formedwith a gap of 1 cm. Discharge
dynamics obtained by the ICCD camera demonstrate that the
plasma sheet, which appears diffuse to the naked eye, actually
consists of multiple individual streamers, including primary
and secondary streamers. The primary streamers can penet-
rate the discharge gap and quickly extinguish after reaching
the plate, while the secondary streamers only propagate about
3–4 mm away from the HV electrode. Although the diffuse
discharge generated in the knife–plate electrode geometry is
not completely homogeneous, the short voltage pulse restricts
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the thermal-ionization instability and maintains the entire dis-
charge in an intermediate state between corona and spark. Both
current and discharge dynamics in the experiment qualitatively
agree with the calculated results. Even though a 2D electrode
geometry was used to generate diffuse discharge and 2D simu-
lation can capture the dominant features of discharge propaga-
tion dynamics, the 3D structure of individual streamer is still
an important factor for further investigation.
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Appendix

To illustrate the influence of the initial electron density ne0 on
the discharge properties, the calculated results with three dif-
ferent ne0 values ranging from 1012 to 1014 m−3 are shown
below. As for the calculated current (figure 6), the incre-
ment in ne0 makes the breakdown occur earlier and elev-
ates the amplitude of the second peak, while it reduces the
first peak slightly. The temporal evolution of electron density,
N2(C3Πu) density and electric field at two different locations
(0.2 and 0.8 cm away from the HV electrode) is also presented
(figure 7). For these three cases, the temporal evolution of elec-
tron density and N2(C3Πu) density shows a two-peak feature
near the HV electrode, but only one peak near the ground, all
of which indicate that the discharge consists of a primary and
secondary streamer phase. Although ne0 varies by two orders
of magnitude, the calculated results show that the maximum
electron density, N2(C3Πu) density and electric field change
slightly. For example, when ne0 varies from 1012 to 1014 m−3,
ne,max changes from 4.4 × 1020 to 4.7 × 1020 at a location of
0.2 cm away from the HV electrode. Thus, the value of ne0 has
a little effect on ne,max.
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Figure 6. Calculated current with different initial electron density ne0.

Figure 7. Temporal evolutions of (a) electron density, (b) N2(C3Πu) density and (c) electric field with different ne0 at locations 0.2 cm (left)
and 0.8 cm (right) away from the HV electrode.
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